Enabling the Global Goals

Evidence of digital solutions’ impact on achieving the Sustainable Development Goals (SDGs)
“GeSI is fully committed to steering the impact of digital solutions on SDG achievement. We will work with our members and partners to scale the positive impacts, flip the negative impacts and innovate for all SDGs.”

James Gowen, Chairman, Global e-Sustainability Initiative (GeSI)

The purpose of this report

The UN Sustainable Development Goals (SDGs) represent the most ambitious global agenda ever formalized for the social, economic and environmental improvement of the world. If the SDGs become reality, the world will be transformed for good by 2030: no poverty, no hunger, gender equality, economic growth decoupled from environmental resource degradation – while ensuring no one is left behind.

Digital solutions, such as virtual learning and working, smart agriculture and e-health, are currently transforming the world and how people live. They can be a unique catalyst for the transformations needed to achieve the SDGs. The digital transformation is happening at unprecedented speed, reaching people nearly everywhere and in every income bracket, providing people-centric solutions and new business models that enable wealth and prosperity.

The purpose of this report is threefold:

→ Share fresh insights about how digital solutions are already impacting the SDGs

→ Inform steering of digital industry action on SDG achievement

→ Define an evidence-based and credible methodology for measuring the digital industry’s impact on the SDGs¹

Building on our deep understanding of digital’s impact potential

This report builds on GeSI’s extensive work on quantifying the sustainability benefits of digitalization. GeSI’s "SMARTer"² series provided compelling data on digital solutions’ potential to substantially reduce global CO₂ emissions. In 2016, GeSI made the SDGs its guiding framework for action, and published the "SystemTransformation" report³, which demonstrated that digital solutions can drive progress on achieving all 17 SDGs and deliver strong positive social, economic and environmental impacts, including:

→ saving 720,000 lives and preventing 30 million injuries on the world’s roads (SDG 3)

→ protecting 12% of GDP in developing countries and USD 9 trillion in enabled revenues and cost savings (SDG 8)

→ reducing global CO₂ emissions by 20% and decoupling growth from oil consumption (SDG 13)

By fostering responsibility and engaging with stakeholders, GeSI and its members aim to unleash the full positive impact potential of digital solutions.

Contents

The purpose of this report 03
Highlights 04
01 A strong and positive link 06
02 GeSI’s new Digital Access Index 12
03 Early indications of causation 14
 Why causation matters
 SDG 3: Saving lives through e-health 15
 SDG 5: Closing the gender gap through digital fluency 18
 SDG 13: Enabling CO₂ emissions savings through digital solutions 21
 Digital’s link with education, work, innovation and cities 23
04 Digital industry action and GeSI’s commitment 24
Methodological appendix 27
There is a strong and positive link between digital access and SDG achievement.

This report shares new, compelling evidence that the digital industry is positively linked to achieving most of the 17 UN Sustainable Development Goals (SDGs). For 65% of SDGs, there is a clear positive correlation with digital access at every level of analysis, across the world. Only 1 negative link – between digital access and the environmental SDG 12 – is apparent.

GeSI’s new Digital Access Index allows the digital industry to track its contribution to the SDGs.

Debuting in this report, GeSI’s new Digital Access Index is part of a robust methodology for measuring the digital industry’s contribution to SDG achievement. The index is unique because it includes indicators relevant to the entire digital industry, and considers cross-cutting technologies and digital solutions.

Early indications suggest that causal relationships may exist between digital access and the SDGs.

This report goes well beyond observing a coincidental link between digital access and SDG achievement, and gets closer to causation. That’s important because it allows for more confident estimates of the quantitative impact of digital access on SDG achievement, as the figures below demonstrate. Furthermore, it creates a solid foundation of evidence that can inform action.

The digital industry needs to act in three ways: scale, flip and innovate.

This report suggests three action areas for the digital industry:

- scale the positive impacts
- flip the negative impacts
- innovate for all SDGs

GeSI is committed to working with its members and the wider digital industry to steer and maximize digital’s positive impact.
Overall results: strong positive link

Our research finds a strong and positive link between digital access and SDG achievement (see Exhibit 1). This means that an increase in digital access, such as more people and devices connected or higher network coverage (see Chapter 2), is linked with an increase in SDG achievement. With a coefficient of determination (R^2) of 0.78, this link is very strong.

These results are based on the most comprehensive correlation analysis of digital access and SDG achievement performed to date: data from 157 countries, on 81 SDG achievement indicators and 21 digital access indicators.

Positive relationship dominant across all levels of analysis

The positive link between digital access and SDG achievement is dominant across every level of analysis (as Exhibit 2 illustrates):

- The SDG view: all levels of SDG achievement are mostly positively correlated with digital access across the world — at the index level, the level of the 17 SDGs and for the 81 individual SDG indicators analyzed

- The digital access view: all levels of digital access are mostly positively correlated with SDG achievement across the world — at the index level, the 4 Digital Access Index categories and the 21 individual digital access indicators analyzed

- The geographical view: the positive link holds true for all 3 development levels and 4 regions

How to interpret the correlation graphs

- The x-axis shows digital access as measured by GeSI’s new Digital Access Index (DAI). The unique characteristics of the DAI are explained in Chapter 2 of this report and further details are provided in the methodological appendix.

- The y-axis illustrates SDG achievement measured by the SDG Index of the UN Sustainable Development Solutions Network (SDSN) and the Bertelsmann Foundation (hereafter referred to as the SDG or SDSN Index). More information about the SDG Index is provided in the methodological appendix.

- The correlation analysis uses DAI and SDG achievement data across 157 countries, represented by the dots on the correlation graphs.

For more detailed information about the methodology of the correlation analysis, please refer to the methodological appendix.
The SDG view: 65% positively linked to digital access

On the SDG level of analysis, 3 patterns of relationship between digital access and SDG achievement appear:

- 11 of 17 SDGs (65%) have a positive link with digital access
- 1 SDG (SDG 12) has a negative correlation with digital access (explored in the section about negative environmental aspects below)
- 5 SDGs have a yet unclear relationship to digital access

Strongest positive link with social and economic SDGs

Social SDGs that improve people’s quality of life and economic SDGs that foster equitable growth have the strongest positive link with digital access (refer to Exhibit 4). This reflects the people-centric nature of digital technologies and their potential to increase participation and create new business models that drive new wealth and prosperity.

The 3 SDGs with the strongest correlations are:

- SDG 9 (industry, innovation and infrastructure): Logically, digital access has the highest correlation with the SDG that includes digital infrastructure indicators, such as internet use and mobile broadband subscriptions. It also positively correlates with the quality of infrastructure in general
- SDG 3 (health and well-being): 4 of the 10 most strongly correlated indicators with digital access come from SDG 3, with healthy life expectancy at birth and neo-natal mortality reduction being the strongest
- SDG 8 (decent work and economic growth): There is a very strong correlation between digital access and providing access to bank accounts (the third-strongest correlated indicator of all SDG indicators), which enables more economic participation. The analysis also finds that digital has a positive link with reducing child labor, an observation that could be further analyzed in the future.

Context: The UN Sustainable Development Goals (SDGs)

The SDGs are 17 global goals for transforming the world for good in all impact areas of sustainability:

- Social SDGs – improving people’s quality of life, with enough to eat (SDG 2), in good health (SDG 3), and with an open and trained mind (SDG 4), flourishing in a world without violence (SDG 16)
- Economic SDGs – fostering equitable growth, with no poverty (SDG 1), gender equality (SDG 5), a highly productive economy and employment (SDG 8), innovative infrastructure and environmentally-friendly industrialization (SDG 9), while leaving no one behind (SDG 10)
- Environmental SDGs – protecting the environment, ensuring that the other goals are achieved without destroying the planet’s ability to regenerate for future generations, with fresh water supply (SDG 6), cleaner energy for everyone (SDG 7), better-functioning and cleaner cities (SDG 11), resource efficiency (SDG 12), combating and adapting to climate change (SDG 13), as well as the need to protect aquatic and terrestrial ecosystems (SDG 14 and SDG 15)

Cross-cutting SDG 17 is about enabling the transformation needed to achieve all other goals, including digital technologies.
A mixed picture for environmental SDGs

For environmental SDGs, our analysis identifies 8 negative relationships, mostly related to environmental impacts (also compare Exhibit 4).

- The only SDG that has a negative link with digital access is SDG 12 on responsible consumption and production, which – among other things – promotes the efficient use of natural resources and waste reduction

- Of the 8 SDG indicators with negative links to digital access, 7 are about the environment, with e-waste generated (SDG 12) having the strongest negative link. There is also a negative correlation with CO₂ emissions (SDG 13 on climate change), however, when we look at the impact of digital access on overall CO₂ emissions – not just energy – and remove other effects like GDP, this report finds a net positive impact (see Chapter 3).

- The only non-environmental indicator with a negative link to digital access is about adult obesity

The digital access view: Connectivity use, infrastructure and technologies with a stronger link than affordability

Three sub-categories of the GeSI's Digital Access Index (DAI) – described in the next chapter – have a very strong and positive relationship with SDG achievement (see Exhibit 6):

- Use of connectivity
- Technologies
- Infrastructure for connectivity

The link between affordability and SDG achievement appears to be weak, also across all geographic levels. This result does not necessarily demonstrate that affordability is irrelevant, but that the actual use and quality of connectivity infrastructure and technologies, such as social media, are more directly linked to SDG achievement. In Least Developed Countries, mobile-related indicators are most strongly linked with SDG achievement, demonstrating the relevance of mobile penetration in environments with less resources.

Evidence of connected people’s and IoT’s positive links with SDG achievement

Connecting people is a core element of harnessing the power of digital access for SDG achievement. “Individuals using the internet” and “number of secure servers” are the two indicators most strongly and positively correlated with SDG achievement and demonstrate the relevance of mobile penetration in environments with less resources. The increasing relevance of intelligent machines and the rise of the Internet of Things (IoT) makes the indicator “cellular machine-to-machine (M2M) connections” particularly interesting. Our analysis reveals that M2M connections already have several positive and one negative correlation with SDG indicators (see Exhibit 7).

The increasing relevance of intelligent machines and the rise of the Internet of Things (IoT) makes the indicator “cellular machine-to-machine (M2M) connections” particularly interesting. Our analysis reveals that M2M connections already have several positive and one negative correlation with SDG indicators (see Exhibit 7).

M2M connections are most strongly correlated with infrastructure quality (SDG 9). But our results also include positive links between connected machines/IoT and specific use cases, such as improving wastewater treatment (SDG 6), reducing traffic deaths (SDG 3) and increasing cereal yield (SDG 2). The negative correlation with e-waste (within SDG 12) is a reminder that increased digital access currently has some negative environmental impacts.

“We fully support this project that looks closely at how to achieve the UN’s SDGs. Taiwan Mobile has just announced its Sustainability Vision 2030 Blueprint – a strategic map for establishing a clear consensus about sustainability KPIs at every level of the company. As an ICT company, we must not be absent from global sustainable development for a better future.”

James Jong, President, Taiwan Mobile
GeSI’s new Digital Access Index

Debuting in this report, GeSI’s new Digital Access Index is part of a robust methodology for measuring the digital industry’s contribution to SDG achievement. The index is unique because it includes indicators relevant to the entire digital industry, and considers cross-cutting technologies and digital solutions.

"This report marks an exciting milestone: the launch of GeSI’s new Digital Access Index. This is the first index that reflects the entire digital industry, allowing us to track and effectively steer how digital solutions impact SDG achievement.”

To best reflect digital access and digital industry activity, GeSI has developed the Digital Access Index (DAI). The DAI is unique in combining indicators relevant to the entire digital industry and being solely focused on digital and technology indicators, as opposed to other indices that focus on one aspect of the digital industry or include indicators on SDG impact, like education or economic progress.⁸

The DAI comprises indicators in the following categories (see Exhibit 8):

- **Connectivity**, divided into 3 sub-categories:
 - Infrastructure, with indicators such as 4G network coverage and number of internet exchange points
 - Use, with indicators such as fixed- and mobile broadband subscriptions and smartphone market penetration
 - Affordability, with indicators such as cost of cellular tariffs or cost of mobile-specific taxation

- **Technologies**, with indicators such as cellular M2M connections or social media penetration

- **Digital solutions/use cases**, for example, e-health or e-learning; these will be included in the index as soon as global data becomes available about their spread and use

The DAI is here to provide a relevant and reliable foundation of evidence to inform the digital industry’s activities towards SDG achievement. If, for example, cellular M2M connections are key to achieving a certain SDG, this is particularly relevant to device and sensor production, as well as software and apps development.

<table>
<thead>
<tr>
<th>Digital Access Index (DAI) categories</th>
<th>Indicators of the DAI 23 (in total for 2018)</th>
</tr>
</thead>
</table>
| Connectivity | - 4G (infrastructure) coverage
- Number of internet exchange points (IXPs)
- Smartphone market penetration |
| Use | - Individuals using the internet
- Smartphone market penetration |
| Affordability | - Cost of cellular tariffs
- Cost of mobile-specific taxation |
| Technologies | - Cellular M2M connections
- Mobile social media penetration |
| Digital solutions/use cases | - No suitable indicator data available on a global scale in 2018
- Dynamic updates as soon as global indicator data available |

Luis Neves,
Managing Director,
Global e-Sustainability Initiative (GeSI)
Why causation matters
Correlation analyses have a major limitation: even if we discover that two things are linked, this could be coincidental. Is digital access impacting SDG achievement, or is it actually the other way around? This is the classic “chicken and egg” problem. Only by proving causal – or close-to-causal⁹ – relationships can we get a clearer picture of what aspects are causing others. This certainty provides a reliable foundation of evidence upon which action can be taken. In order to prove a close-to-causal relationship, different tests need to be applied, including checking consistency of data and consulting other related research. For more information, please refer to the methodological appendix.

More than a coincidental link
This report’s global correlation analysis across all SDGs establishes more than a coincidental link between digital access and SDG achievement. Its large set of data, with consistent results over different levels of analysis, makes it more robust than, for example, correlations with smaller data samples. Additionally, our findings have been confirmed by outside research. However, the results are still far away from causality. More research is needed across all SDGs.

How significant is the impact?
Getting closer to causality increases certainty that digital access impacts SDG achievement. But how significant is the impact? Digital access is only one of several variables influencing SDG achievement. By analyzing digital access together with these other variables using multivariate regressions, a better prediction about the quantitative impact on certain SDG indicators can be made.

We now take a closer look at 3 SDGs – SDG 3 (good health and well-being), SDG 5 (gender equality) and SDG 13 (climate change). For each of these SDGs, we explore the correlation results, investigate other research to get closer to causation, and then run a multivariate regression analysis to identify the impact that an increase in digital access can have on SDG achievement compared to other variables. We selected these SDGs to provide a balanced view of the 3 impact areas, and for the following reasons: SDG 3 is the social SDG with the highest correlation with digital access. For SDG 5, there is already evidence of a close-to-causal relationship between digital access and economic participation. SDG 13, with a focus on CO₂ emissions, is highly relevant to the digital industry and global environmental protection.

SDG 3: Saving lives through e-health
SDG 3 on health and well-being is the SDG with the second-strongest positive correlation with the GeSI Digital Access Index of all SDGs. It includes targets to reduce maternal mortality rates (target 3.1), end deaths of children (target 3.2), achieve universal health coverage (target 3.8), foster a better-trained health workforce (target 3.c), reduce lifestyle diseases like diabetes (target 3.4) and halve deaths from road accidents (target 3.6).

SDSN measures progress towards SDG 3 achievement through 14 indicators on a global level. The detailed correlation results for 4 indicators are displayed in the table below.¹⁶
Multiple strong and positive relationships between digital access and SDG 3 indicators on good health and well-being

Exhibit 10: Selected SDG 3 indicator-level SDG achievement status and correlation results with digital access

<table>
<thead>
<tr>
<th>SDG 3 indicator</th>
<th>SDG achievement status highlights</th>
<th>Relationship highlights</th>
<th>Correlation scatterplot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal mortality (per 1,000 live births)</td>
<td>- Globally, 13 out of 1,000 newborn babies die before reaching 28 days of age</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Traffic deaths (per 100,000)</td>
<td>- Globally, 17 out of 100,000 people die in a fatal traffic accident</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Universal health coverage tracer index (0-100)</td>
<td>- Globally, the average score of the universal health coverage tracer index is 75/100 points</td>
<td>0.61</td>
<td></td>
</tr>
</tbody>
</table>

Other positively correlated indicators (R²)
- Healthy life expectancy at birth (year)
- Under 5 mortality (per 1,000 live births)
- Subjective well-being (0-10)
- Adolescent fertility (births per 1,000)
- Maternal mortality (per 100,000 live births)
- Births attended by skilled health personnel (%)

Other indicators with unclear correlation (R²)
- Incidence of tuberculosis (per 100,000)
- Tuberculosis recommended vaccine (vaccinated % of DTP)
- Death rate from household and ambient pollution (per 100,000 live births)
- HIV incidence (per 1,000 people)

Concrete digital solution beyond connectivity
E-health is the most powerful digital solution beyond connectivity that contributes to the achievement of SDG 3. It puts the doctor in patients’ pockets, for example, through remote diagnostics or providing access to health-care information from anywhere, anytime. E-health solutions also encompass electronic health data storage, big data health analytics, personalized medicine and artificial intelligence (AI). E-health hardware include sensors, wearables and user devices, e.g. to display augmented reality.

Currently, there is no indicator that tracks the adoption of e-health solutions that could be included in GeSI’s Digital Access Index, beyond the connectivity, use and technological aspects already considered.

Getting closer to causation
The consistency of positive correlations of digital access with several health effects are a first signal towards causality. Reviewing the research on digital access we find supporting evidence for digital’s positive health impact, especially for e-health solutions that provide remote diagnostics and digital access to health information. This is powerfully illustrated by the reduction in neonatal mortality that can be enabled by digital access.

For wearables, such as fitness trackers, however, the research reviewed comes to an ambiguous result.

Quantifying the digital impact: 2 babies saved
Digital access, particularly health information and remote diagnostics, can help reduce deaths of babies in their first 28 days. Running a multivariate regression analysis, our research finds that a 5% increase in digital access would lead to a 7.4% decrease in neonatal mortality. This translates into a global average of 1 newborn life saved for every 1,000 live births. In the Least Developed Countries, 2 newborn babies for every 1,000 live births would be saved, reducing neonatal mortality from 28 to 26 (per 1,000 live births). Of all variables analyzed, digital access (measured by the DAI) is the most relevant variable for predicting neonatal mortality. Other factors significantly influencing whether newborn babies survive their first 28 days are the share of the population with health coverage, the share of the population with access to improved sanitation facilities, GDP per capita and the density of medical professionals in the population. Their impact share is removed when quantifying the impact potential of the DAI.

Ranking of the most important variables impacting neonatal mortality (per 1,000 live births) in model

1. Digital Access Index (DAI)
 - Most important indicators:
 - Individuals using the internet
 - Smartphone market penetration
 - Mobile social media penetration
2. Universal health coverage tracer index
3. Improved sanitation facilities per % of population
4. GDP per capita
5. Number of physicians, nurses and midwives per 1,000 people
SDG 5 on gender equality has a clear, positive correlation with GeSI’s Digital Access Index (DAI).

SDG 5 includes targets to ensure women’s full and effective participation and equal opportunities for leadership (target 5.5), universal access to sexual and reproductive health and rights (target 5.6), equal rights to economic resources and property (target 5.a) and promote the use of enabling technology, in particular Information and Communications Technologies (target 5.b).

The SDG 5 indicators and achievement status

SDSN measures progress towards SDG 5 achievement through 4 indicators on a global level.

- Female years of schooling (% male)
- Women in national parliaments (%)
- Female labor force participation (% male)
- Unmet demand for contraceptives (%)

These indicators are displayed in the table below.

SDG 5: Closing the gender gap through digital fluency

Digital fluency could halve the time needed to get to gender equality in the workplace

Exhibit 14: Overview of digital fluency driving gender equality in the workplace

DIGITAL FLUENCY

- Positively impacts:

GENDER EQUALITY AT WORK

- The combination of three career outcomes:
 1. Education: What level of education women achieve
 2. Work: Whether women enter and retain employment
 3. Advancement: How successful women are as they move towards leadership positions

PREDICTION

If the pace at which women become digitally fluent was doubled, countries could halve the time to workplace gender equality.

1/2 the time needed

Digital fluency positively impacts gender equality in the workplace

In its “Getting to Equal” study, GeSI member Accenture finds evidence of a close-to-causal link between more digital fluency and a positive impact on gender equality at work. Digital fluency measures how women can access and use connectivity. It analyses indicators such as the percentage of women using the internet, how women make use of specific digital solutions, such as e-banking, and how they acquire digital skills. The study surveyed more than 4,900 people across 31 countries and 3 generations. For more information about the research, please refer to the methodological appendix.

Concrete digital solutions beyond connectivity

There is no gender-specific digital solution for improving gender equality. It is connectivity and technologies – and the way women use them – that shape how digital can help to learn, search for employment or develop relevant digital skills. This ability to use connectivity and technologies is referred to as “digital fluency” in Accenture’s 2016 “Getting to Equal” study, which unveils a close-to-causal relationship between digital and SDG achievement.

Getting closer to causation

For SDG 5, research has identified a close-to-causal link between digital access and SDG achievement: the “Getting to Equal” study has run rigorous analyses providing evidence that digital fluency, the ability to access and use connectivity, positively impacts gender equality in the workplace (Refer to the description in the exhibit below).
Quantifying the digital impact: 2 more weeks of schooling for girls and women

Digital access can help close the education duration gap between female learners and their male peers. Running a multivariate regression analysis, our research finds that a 5% increase in digital access would result in a 0.5% increase in years of schooling for girls and women compared to boys and men. This would mean that, on average, every female learner would receive 2 additional weeks (14.5 days) of schooling.

From the multiple variables analyzed, digital access (measured by the DAI) is the third-most relevant variable to explain changes in years of schooling for girls and women. Two other variables – female pupils in secondary education and the share of population with improved sanitation facilities – have a higher explanatory power than the DAI. Behind the DAI, the pre-primary school enrollment of girls is the fourth-most relevant variable. The impact share of the non-digital variables is removed when quantifying the impact potential of the DAI.

Links to other SDGs

Digital access can also positively impact gender equality targets in other SDGs, specifically SDGs 4 and 10:

- Target 4.5: substantially increase number of youth and adults with relevant skills
- Target 4.4: equal access to vocational and tertiary secondary school education for all girls and boys
- Target 4.1: free, equitable and quality primary and secondary school education for all girls and boys
- Target 4.3: equal access to vocational and tertiary education for all women and men
- Target 4.2: promote access of individuals, in particular people with disabilities, to the internet
- Target 4.4: substantially increase number of youth and adults with relevant skills
- Target 10.2: empower and promote inclusion of all irrespective of sex and other aspects

SDG 13 on climate action has an unclear correlation with GeSI’s Digital Access Index (DAI) on an SDG level. To drill down and understand the actual impact of digital access on reducing CO₂ emissions, our multivariate regression analysis removed other effects, such as GDP, and could demonstrate a positive impact of digital access on reducing CO₂ emissions.

SDG 13 includes targets to strengthen resilience and adaptation to natural disasters (target 13.1), integrate climate change measures into policy making (target 13.2), improve capabilities on climate change mitigation and adaptation (target 13.3) and promote development aid mechanisms and capacity building for regions most severely affected by climate change (targets 13.4 and 13.5).

The SDG 13 indicators and achievement status SDSN measures progress towards SDG 13 achievement through 3 indicators on a global level. One indicator has a negative correlation and 2 indicators have an unclear correlation with digital access.

A mixed picture for SDG 13 indicators on climate change

Exhibit 17: SDG 13 indicator-level SDG achievement status and correlation results with digital access

<table>
<thead>
<tr>
<th>SDG 13 Indicator</th>
<th>SDG achievement status highlights</th>
<th>Strength of relationship (R²)</th>
<th>Relationship</th>
<th>Correlation scatterplot</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ emissions from energy (tCO₂/capita)</td>
<td>- Globally, 4.8 tons of CO₂ per person are caused by energy consumption due to burning of petroleum, natural gas and coal</td>
<td>0.41</td>
<td>positive</td>
<td>![Correlation scatterplot 1]</td>
</tr>
<tr>
<td>Climate change vulnerability index (0-1)</td>
<td>- Global average climate change vulnerability is scored at 0.11/1 (1 indicating highest vulnerability) regarding weather-related disasters, sea level rise and loss of agricultural productivity - Least Developed Countries’ average climate change vulnerability score stands at 0.16/1, almost 4x the score of developed regions</td>
<td>0.38</td>
<td>positive</td>
<td>![Correlation scatterplot 2]</td>
</tr>
<tr>
<td>Spillover: Imported emissions, tech-adjusted (tCO₂/capita)</td>
<td>- Developing regions have negative technology-adjusted CO₂ emissions imports per person (-0.48tCO₂/capita) - In Least Developed Countries, 0.12 t of technology-adjusted CO₂ emissions per person are imported</td>
<td>0.09</td>
<td>unknown</td>
<td>![Correlation scatterplot 3]</td>
</tr>
</tbody>
</table>
Concrete digital solutions beyond connectivity
GeSI’s “SMARTer2030” study identifies twelve digital solutions that have the potential to reduce CO₂ emissions. These include smart agriculture, smart building, smart energy, smart manufacturing and smart mobility, connecting machines and providing intelligent software and apps to capture efficiency gains and enable the transition to a renewables-based economy.

Getting closer to causation
A plethora of research and case studies, like those analyzed and presented in GeSI’s “SMARTer2030” or on this report’s website, provide evidence of efficiency gains and CO₂ emission reductions due to digital solutions. On the other hand, it is also clear that digital has a CO₂ footprint, for example, emissions from energy consumption. Taking both effects into account – the savings and the emissions – studies estimate a net positive effect for digital solutions on CO₂ emissions reduction.²⁸

Quantifying the digital impact: cutting 450 coal plants’ worth of CO₂ emissions
Digital access can have a net positive impact on CO₂ emissions reduction. GeSI’s multivariate linear regression modeling removes other effects such as GDP and reveals that a 5% increase in digital access would reduce consumption-based CO₂ emissions by 1.6%. This would mean that 530 Megatons of CO₂ could be avoided globally, equivalent to the annual emissions of 468 coal plants (average plant with 300 Megawatts).

From the variables analyzed, digital access (measured by the DAI) is the fifth-most important variable to explain CO₂ emission reduction. Four variables are more important: the total population, the share of renewable energy consumed, the total energy usage and the share of GDP caused by industry activity.²⁹ The impact share of the non-DAI variables on CO₂ emissions is removed when quantifying the impact potential of the DAI.

Digital access + 5% = ~ 450 coal plants shut off (average plant with 300 MW)

Digital’s link with education, work, innovation and cities
In addition to the 3 SDGs analyzed in more detail above, this section looks at the correlation results of SDGs 4 (good education), 8 (decent work and economic growth), 9 (industry, innovation and infrastructure) and 11 (sustainable cities and communities). These SDGs have a high relevance for the digital industry,³¹ and could be candidates for future analyses of close-to-causal impact.

Digital links with education, work, innovation and cities
Exhibit 19: Correlation results and digital solutions for SDGs 4, 8, 9 and 11

SDG SDG achievement status highlights Correlation and strength (R²) DAI correlated with indicators	Concrete digital solutions beyond digital access and their benefits		
SDG 04: Quality Education	- Globally, 90% of adolescents between 15 and 24 years of age can read and write. In Least Developed Countries, only 70% achieve the level of literacy	e-learning: e.g., videoconferencing, advanced data analytics, Massive Open Online Courses (MOOCs), and gamification	> can improve access to work and help decouple growth from CO₂ emissions
SDG 08: Decent Work and Economic Growth	- Globally, 5 in 10 children between the ages of 11 and 15 years is involved in some form of child labor. Globally, only slightly over half of the adult population has access to a bank account or has used a mobile money service in the past 12 months	e-work: e.g., augmented reality, cloud-based platforms ("platform as a service"), telecommuting and virtual business meetings	> can improve access to work and help decouple growth from CO₂ emissions
SDG 11: Sustainable Cities and Communities	- Globally, countries achieve a 3.0% (7) score (7 indicating extensive and efficient standards) on infrastructure quality on aspects such as telephony, transport and energy	Smart manufacturing: e.g., industrial Internet of Things (IoT) and machine-to-machine (M2M) communication, robotics, 3D printing, cyber-physical systems (CPS), data analytics and drones	> can deliver economic benefits to multiple stakeholders
	- 76% of the global urban population has access to improved drinking water protected from outside contamination.	Smart city mobility: e.g., mobile ride-sharing, e-mobility, all-electric transportation, intermodal transport and connected infrastructure/IoT	> can reduce accidents and improve air quality

Ranking of the most important variables impacting consumption-based CO₂ emissions (MtCO₂) in model
1. Total population
2. Renewable energy consumption as a share of total energy consumption
3. Energy use per capita
4. Industry share of GDP
5. Digital Access Index - Most important DAI indicators:
 - Individuals using the internet
 - Mobile social media penetration
 - 3G network coverage

5% increase in digital access = CO₂ emissions reduced equivalent to ca. 450 coal plants shut off
Exhibit 18: Impact potential of digital access (as per GeSI’s Digital Access Index) on consumption-based CO₂ emissions (MtCO₂)²⁷
Digital industry action and GeSI’s commitment

This report suggests three action areas for the digital industry: to scale the positive impacts, flip the negative and innovate for all SDGs. GeSI is committed to working with its members and the wider digital industry to steer and maximize digital’s positive impact.

“This report has an important message for businesses: using the positive force of digital transformation and integrating a sustainability lens into the innovation process can unlock business opportunities of USD 2.1 trillion for the digital industry.”

Mark Knickrehm, Group Chief Executive, Accenture Strategy

This report presents compelling evidence of a strong, positive link between digital access and most of the Sustainable Development Goals. A fair next question might be, “so what?”

We believe this evidence can be used as a foundation for digital industry action: to deliver benefits to society and create new business opportunities for the industry. Where we can now confidently say digital solutions are making a positive impact, let’s look for ways to maximize these effects. And where digital solutions are negatively linked to SDG achievement, the digital industry can work to turn things around.

Three action areas for maximizing SDG impact and business value

Based on the different relationship patterns of digital access with SDG achievement, this report identifies three action areas for the digital industry to maximize its impact on SDG achievement:

1. scale the positive impacts
2. flip the negative impacts
3. innovate for all SDGs

These actions link positive impact with the prospect of new business opportunities.

Our research finds a $2.1 trillion revenue opportunity for the digital industry by 2030 from delivering solutions with positive SDG impacts – a 60% growth boost compared to today. Roughly $0.4 trillion come from increasing connectivity while the remaining $1.7 trillion result from deploying digital solutions, such as e-commerce, e-work, smart buildings, e-government and e-learning.

Innovating for SDG impact:

A beneficial lens for companies

Innovating for SDG impact means applying a socially or environmentally inspired lens to the innovation process with the twofold objective of increasing the positive SDG impact of a company while capturing new business opportunities.

This report and the underlying analysis helps GeSI members understand which interventions and digital solutions would be most impactful. To act on these insights, digital companies can align their innovation process with the SDGs, for example, by conducting dedicated innovation sessions focused on addressing specific opportunities (like e-health and smart city solutions) or challenges (like e-waste or obesity). Additionally, companies can apply an SDG lens to innovation by considering aspects like the CO₂ impact of new products and solutions alongside traditional financial metrics.

Companies integrating an SDG lens into their innovation process benefit in four main ways. They can

- increase their revenues through new products and services and more future-proof business models
- reduce their cost of capital from better ratings (due to better sustainability performance)
- reduce their risks of paying fines (due to e-waste, for example) or losing their license to operate
- improve their reputation with governments and the wider public by actively contributing to positive societal progress while reducing negative impacts
GeSI’s commitment: Steering industry impact for SDG achievement

With this report, GeSI reinforces its commitment to steering the digital industry’s impact towards SDG achievement. It will do this in four ways:

1. work with its members, the wider digital industry and partners in other industries to scale positive impacts, flip negative impacts and innovate across all SDGs

2. regularly update this impact analysis and enhance the Digital Access Index with new indicators to better measure the spread of enabling technologies, such as the Internet of Things (IoT), and access to innovative digital solutions, like smart agriculture, e-health and e-learning

3. support members in addressing concerns about the scale of digital transformation, including concerns about energy consumption and e-waste, human rights in the supply chain, privacy issues, cybercrime, and the potentially negative impacts on employment

4) engage with all partners eager to unleash the full potential of digital solutions towards SDG achievement

Engaging with partners to unleash the full potential of digital solutions

This report shows how digital access, the spread of technologies and innovative digital solutions can enable the system transformation required to achieve the SDGs. But this can only happen through joint efforts. GeSI and its members from the digital industry have a strong desire to collaborate and communicate with many different stakeholders:

– Policy makers are the driving force behind setting the “rules of the game,” both in terms of investment and cultivating the appropriate regulatory environment. They need to be fully aware of the potential of digital solutions to help achieve the SDG agenda nationally and globally. Strong evidence of a link between digital access and SDG achievement reinforces the need for policies that encourage investment in the roll-out of digital infrastructure. The regulatory environment should support innovation to achieve the SDGs, including ensuring a level playing field for competition and innovation in developing regions and avoiding overregulation of smart technologies in developed regions

– Businesses from outside the digital industry can be vital partners for innovating and applying digital solutions for SDGs that are sector-specific, for example, in SDG 2 on smart agriculture solutions, SDG 3 on e-health innovations, SDG 4 on e-learning solutions, SDG 11 on smart city applications, or SDG 13 on enabling the renewable energy transition

– The SDG community, including multilateral organizations like the UN, World Bank, SDSN, NGOs and donor organizations are key facilitators of SDG achievement on a global level and in tailoring solutions to local conditions. GeSI and its members are eager to share findings on the impacts of digital solutions and to learn from and partner with multi-stakeholder and civil society organizations to maximize benefits for local communities

– All actors engaged in statistical evidence for SDG achievement and digital access are invited to jointly develop new indicators to measure progress on digital access with a focus on the spread of technologies like IoT and innovative, SDG-relevant digital solutions

This report has taken us a big step closer to understanding the digital industry’s social, economic and environmental impacts. We now have the evidence to take this impact to the next level.

Let’s make it happen!

“Telcom Group places societal value at the center of how we run our business. To achieve the SDGs and the climate agenda, it is necessary to work across sectors and partner with a wide range of stakeholders. Businesses play a key role in driving this change, and we all have a responsibility to ensure that our activities drive equitable and inclusive growth in the markets we serve. Doing so in a sustainable way, leaders must become ambassadors of change. Now is the time to move from words to numbers to impact.”

Sigve Brekke, President & CEO, Telenor Group

Methodological appendix

This appendix provides further information about the suggested methodology to generate insights based on actual data and steer the digital industry’s impact towards SDG achievement.

Correlation

GeSI commissioned Accenture Strategy to perform a correlation analysis to understand the relationship between digital access (on the x-axis) and SDG achievement (on the y-axis) in 157 countries. This statistical analysis identifies the direction and strength of the relationship between the 2 variables across the selected data sample:

Direction of relationship (also referred to as “relationship” in the executive summary)

Definition: The “direction” of the correlation indicates whether the correlation is positive or negative. A positive correlation means that an increase in the independent variable (digital access on the x-axis) happens in conjunction with an increase in the dependent variable (SDG achievement on the y-axis). In a negative correlation, an increase in digital access happens in conjunction with a decrease in SDG achievement.

Measurement: The strength of the correlation is measured through the R²-value. It ranges between 0 and 1, with 0 indicating no linear relationship between the two variables (very weak) and 1 indicating a perfectly linear relationship (extremely strong). On a scatter plot, the values get closer to a correlation trend line as R² approaches 1 and further away as R² approaches 0.

Relationship patterns

Three patterns of relationship emerge from the correlation analysis:

– Positive: When an increase in digital access correlates with an increase in SDG achievement. This is defined by a positive R-value and a robust strength of the correlation between the two variables, i.e. R² ≥ 0.3 on a scale from 0 (indicating no linear relationship) to 1 (indicating perfect linear relationship)
Based on 6 criteria: the digital industry can influence them, affordability and technologies) were selected for the DAI
To measure digital access, GeSI commissioned Accenture
GeSI’s Digital Access Index (DAI):
2 variables to analyze their results for a large set of
countries – 1 on digital access on the x-axis and 1 on SDG
achievement on the y-axis. Correlations were run across
all aggregation levels of the 3 perspectives:
– Digital access perspective: index-level (Digital Access
Index (DAI) – see below), 4 DAI categories and 21 DAI
indicators
– SDG achievement perspective: index-level (SDG Index –
see below), 17 individual SDGs, 81 SDG indicators
– Geographical perspective: global (all 157 countries
combined), 3 development levels and 4 regions

GeSI’s Digital Access Index (DAI):
x-axis of correlation
To measure digital access, GeSI commissioned Accenture
Strategy to create a proprietary Digital Access Index (DAI)
for GeSI in 5 steps:
1. Indicator selection: 21 indicators across 4 sub-categories
(connectivity infrastructure, connectivity use, connectivity
affordability and technologies) were selected for the DAI
based on 6 criteria: the digital industry can influence them,
they cover a large share of countries, stem from a reputa-
ble source (either listed in reputable index or provided by
reputable source such as ITU, GSMA or World Bank), are
regularly updated, can easily be accessed from a publicly
available source and measure actual data (i.e., not based
on expert surveys). Prior to this, existing indices had been
analyzed for their suitability (see Endnote 8).
2. Data collection: Data for these indicators were collected
for the 157 countries that are included in SDSN’s SDG
Index (see explanation of index below). The latest data
points available were used.

3. Data cleansing: Outliers in the data were validated
through research. A cutoff threshold for outliers was
defined by three standard deviations above and below the
mean of the indicator values. Outlier values were
adjusted by trimming them to the cutoff threshold. Highly
skewed indicators were logarithmically transformed.
Where data for a country was missing, it was imputed
based on the average available indicator value of similar
countries based on region and development level.

4. Data normalization: All indicators were normalized, i.e.
brought on the same scale from 0 (lowest) to 1 (highest),
creating a relative scoring of countries for digital access
indicators. The following formula was used for normalization:
\[
x' = \frac{x - x_{\text{lowest}}}{x_{\text{highest}} - x_{\text{lowest}}}
\]
As part of the normalization, indicators for which a high
value indicates low digital access, such as prepaid mobile
cellular tariffs, were inverted.

5. Weighting and scaling: To create the DAI, a weighted
average approach was taken. All DAI categories are equally
weighted and, within each category, all indicators are also
equally weighted. Like the DAI indicators, the DAI and
its categories are scored from 0 (lowest) to 1 (highest).

SDSN and Bertelsmann Foundation SDG Index:
y-axis of correlation
To measure SDG achievement, this report uses the SDG
Index of the Sustainable Development Solutions Network
(SDSN) and the Bertelsmann Foundation44, currently the
most comprehensive indicator set on SDGs that is aggre-
gated in an index, regularly updated and publicly shares
the raw data. It provides SDG achievement scores across
157 countries, which have an average availability of 80% of
the data across the 81 indicators applicable to all coun-
tries45. SDSN’s SDG Index includes those indicators of the
UN SDG indicators46 that meet the data availability criteria
to be included in the index and “fills gaps in data availabil-
ty with variables published by reputable sources.”44

On all SDG perspective levels (SDG index, SDGs, SDG
indicators), SDSN normalizes achievement scores on a
scale from 0 (lowest) to 100 (highest). As part of the
normalization, indicators for which a high value indicates
low SDG achievement, such as neonatal mortality, are
inverted.46 On the index level (all 17 SDGs combined),
this report exclusively uses SDSN’s SDG achievement for
all countries. On the individual SDG and SDG indicator level,
missing country scores were imputed based on the avera-
ge available indicator score of similar countries based on
region and development level.

Levels of analysis
This report’s correlation analysis systematically associates
2 variables to analyze their results for a large set of
countries – 1 on digital access on the x-axis and 1 on SDG
achievement on the y-axis. Correlations were run across
all aggregation levels of the 3 perspectives:

36. SDSN’s SDG Index includes those indicators of the
Sustainable Development Solutions Network (SDSN) and
the Bertelsmann Foundation. Currently the most
comprehensive indicator set on SDGs that is aggregated
in an index, regularly updated and publicly shares
the raw data. It provides SDG achievement scores across
157 countries, which have an average availability of 80% of
the data across the 81 indicators applicable to all coun-
tries. SDSN’s SDG Index includes those indicators of the
UN SDG indicators that meet the data availability criteria
to be included in the index and “fills gaps in data availabil-
ty with variables published by reputable sources.”

On all SDG perspective levels (SDG index, SDGs, SDG
indicators), SDSN normalizes achievement scores on a
scale from 0 (lowest) to 100 (highest). As part of the
normalization, indicators for which a high value indicates
low SDG achievement, such as neonatal mortality, are
inverted. On the index level (all 17 SDGs combined),
this report exclusively uses SDSN’s SDG achievement for
all countries. On the individual SDG and SDG indicator level,
missing country scores were imputed based on the avera-
ge available indicator score of similar countries based on
region and development level.

The three tests
The correlation analyses run for this report determine
if a change (increase or decrease) in digital access and
a change in SDG achievement coincide. The fact that
both changes can be observed simultaneously proves a
time-based link between the two variables, but does not
signify a unidirectional cause-and-effect relationship
(causation) between them.

This report is explicit about the fact that full causation can
never be proven in the social sciences, the research area
we are operating in. It is only possible to get closer to
causation. We refer to “close-to-causal” relationships if
there is a high level of certainty that digital access or
solutions cause a change in SDG achievement. However,
this does not imply fully proven causality.

To identify close-to-causal relationships,3 3 decisive tests
are required to confirm if digital access drives SDG achie-
vement, or vice versa (also see Exhibit 21):

1. Correlations data consistency test: The correlation
results are tested for consistency across a broad data
sample.
2. Research consistency test: The correlation results are
tested for logical consistency with research.
3. Survey triangulation test: A very important but
time-consuming final test is the triangulation of the
correlation results with surveys. Surveying individuals
can verify which of the aspects analyzed is the cause,
and which is the effect.

If these three tests have all shown the same impact direc-
tion, a close-to-causal relation between the correlated
aspects can be assumed with high certainty. This report
speaks about a close-to-causal relationship if the relations-
ship passed these three tests with positive results. Where
the tests are partially completed, we assume an impact
potential.

Global correlation analysis:
Applying the three tests
The global correlation analysis presented in this report
addresses parts of the first and the second test, making it
more thorough than correlations with smaller samples or
without any other research confirming the hypothesis of
impact direction. However, the results are still a long way
away from confirming causality.

Test 1 on correlation data consistency: First, a set of
over 150 countries was analyzed, thereby providing a
large sample of data. Second, the results are consistent
across the levels of analysis: there is a high consistency
of positive relationship patterns between the different
levels of analysis, as well as some clear negative relati-
onship patterns for selected environmental SDGs and
indicators. In the future, this consistency can be further
tested with emerging data over time, to additionally
check for consistency in a time series.

Test 2 on research consistency: Beyond the work done
by GeSI and Accenture Strategy, many other studies and
organizations, such as the ITU, UN and World Bank,47
suggest a positive impact potential of digital solutions
on sustainable development. Research on the SDGs and/
or SDG indicator level – which is more closely related to
concrete measurable impacts – further confirm a positive
impact direction, including research by GSMA and Hua-
weil.48 Additionally, several case studies from the digital
industry demonstrate tangible positive impacts, and are
available on this report’s website.

Test 3 on survey triangulation: No new survey trian-
gulation was performed on the actual behavior of people,
but existing survey results were analyzed in selected
deep dives.
SDG 3: Impact of digital access/solutions on health and well-being

In the context of SDG 3 on health and well-being, this research partially applied 2 of the 3 tests to get closer to causation (test 1 on data consistency and test 2 on research consistency). While outside research reviewed individual causal relationships for certain aspects of e-health, larger studies with survey triangulation could further validate causality.

- **Test 1 on correlation data consistency:** The positive correlation between digital access and SDG 3 achievement holds true across all development levels and regions (SDG 3 is consistently in the top-5 most strongly and positively correlated SDGs), as well as across the large majority of SDG 3 indicators: 9 out of 14 have a clear positive correlation with GeSI’s DAI. For the top-10 strongest correlated indicators with the DAI are SDG 3 indicators).

- **Test 2 on research consistency:** In sum, research suggests that there is a positive impact of e-health solutions on health. This is particularly true for remote diagnostics and mobile access to health information. For example, a meta-study by Hilty et al. (2013) finds that e-health solutions are effective for diagnosing and assessing mental disorders in many settings and across population segments. Moreover, the study confirms these e-health solutions do not only increase access to care, but that they are actually comparable to in-person care. Similarly, an exploratory study by Beratarche et al. (2014) claims that e-health, specifically mobile health, be a promising tool to address health access, coverage, and equity gaps in developing regions where dealing with chronic diseases. Likewise, the World Economic Forum reports a 50% increase in safe hospital or clinic deliveries for pregnant women in Andhra Pradesh, India, through an internet-based video system that enables remote consultations with obstetricians and gynecologists in Hyderabad. With regard to digital access to health information, the study conducted by Nyanaw and Seif (2014) and the solution review by Liv bare (no date) find mobile access to pregnancy-related health information to have a positive impact on maternal and infant health in developing regions.

Evidence on the benefits of e-health solutions involving big data analytics and artificial intelligence (AI) includes reports on an AI application that leverages iris scans to predict a person’s risk of heart attack or stroke within the next 10 years with 70% accuracy—a level of precision similar to that of blood tests that measure cholesterol levels. With regard to wearable-relevant indicators, the results are ambiguous. This report’s correlation results reveal a negative correlation between digital access and adult obesity (SDSN tracks an indicator on obesity as part of SDG 2). Some studies, however, report a positive impact potential of wearables on obesity reduction. For example, Guattari, Rosenthal and Philips (2016) find that the use of wearables increased well-being and supported weight loss in a test group analysis. Similarly, Yang et al. (2017) discover positive impacts of a combined health app and wearable study on childhood obesity reduction.

- **Test 3 on survey triangulation:** For this report, no primary survey research has been conducted. Also, a review of existing literature did not find any surveys that reconfirm the impact direction of the correlation between digital access and SDG achievement spanning a broad range of countries.

SDG 5: Close-to-causal relationship between digital fluency and workplace gender equality

A close-to-causal relationship between digital fluency and SDG 5, specifically workplace gender equality, has been identified by Accenture’s “Getting to Equal” study, based on conducting the 3 tests for getting closer to causation described above.

- **Test 1 on correlation data consistency:** The study analyzed data for digital fluency and workplace equality across 31 countries, finding consistent results across all countries studied for the positive correlation between digital fluency and workplace equality.

- **Test 2 on research consistency:** The results of the study were found to be consistent with leading research by reputable sources on the topic, such as the World Bank.

- **Test 3 on survey triangulation:** The study surveyed more than 4,900 working men, working women and non-working women across 31 countries and 3 generations. The sample included people working in large, medium and small businesses. These surveys supported the study’s hypothesis that digital fluency was causing improved workplace equality— not the other way around — based on respondents’ views of how digital fluency positively impacts their ability to succeed in the workplace.

SDG 13: Impact of digital access/solutions on reducing CO₂ emissions

To qualify the impact of digital access and solutions on CO₂ emissions (SDG 13), this research applied tests 1 and 2 of the 3 tests to get closer to causation (test 1 on correlation data consistency and test 2 on research consistency). Research and a broad range of company case studies demonstrate the net-positive impact potential of digital access and solutions on CO₂ emissions. This indicates that the enabling potential of digital solutions across many areas of life, such as through e-work or smart building, can outweigh the emissions footprint of digital technologies, such as from data centers.

- **Test 1 on correlation data consistency:** For this report, the correlation data consistency test delivers uncorrected results for the two SDSN indicators related to CO₂ emissions. Higher digital access correlates with the indicator on higher CO₂ emissions from energy, but its correlation with the indicator on imported tech-adjusted emissions is unclear. Due to the conceptual limitations of these indicators to describe countries’ actual CO₂ emissions, the multivariate regression analysis used the non-SDSN indicator consumption-adjusted CO₂ emissions (please refer to Endnote 26).

- **Test 2 on research consistency:** GeSI’s “SMARTer2030” study finds a factor 9.7 emission reduction potential for digital solutions by 2030, indicating that the CO₂e avoided by the use of digital solutions is almost 10 times higher than the expected footprint from digital solutions in 2030 (1.25 GtCO₂e). Taking into account rebound effects worth 1.37 GtCO₂e, GeSI expects a net-positive impact of 9.46 GtCO₂e avoided in 2030 across 12 digital use cases. There is ample research that provides evidence of the actual positive impact of digital access and solutions on CO₂ emissions reduction, for example, in the context of e-work and smart building. The Information Technology & Innovation Foundation finds that telecommunications reduces daily travel by 53 to 77%, cutting down CO₂ emissions from fossil fuels. This is based on a meta-study by Wälti and Safirova (2004) based on 20 empirical studies of telecommuting that confirm a reduction in number of trips, as well as distance travelled. Similarly, Accenture’s experience with smart building solutions finds an up to 40% reduction in CO₂ emissions from households consumption and a 48% reduction from commercial buildings’ consumption due to better energy management, automatic default settings, building supervision and control, as well as the implementation of operational guidelines. These findings on the impact of digital access and solutions are further supported by a plethora of company case studies, for example, in the field of connected transportation. For instance, Verizon partners with IGSIP, a provider of smart parking in urban areas, to reduce the miles driven to find available parking. In 2017, this smart parking solution reports to have avoided over 34,000 metric tons of CO₂e emissions in the United States. Likewise, Deutsche Telekom’s Connected Car solution demonstrates a 15.9% CO₂e emissions reduction potential per car based on a coaching system for optimized driver behavior combined with a real-time traffic information and guiding system that anticipates traffic conditions.

- **Test 3 on survey triangulation:** For this report, no primary survey research has been conducted. Surveys could address questions on verifying CO₂-friendly behavior changes through digital solutions. For future research in the context of CO₂ emissions, scientific measurements comparing settings with and without digital solutions could be another suitable way to confirm a close-to-causal relationship.

Estimating digital impact on SDG achievement: multivariate regression analysis

In addition to testing for causation, this study seeks to predictively estimate the impact that an increase in digital access can have on SDG achievement. To this end, 3 multivariate regression models on SDG achievement variables (within SDGs 3, 5 and 13) were run following a 7-step methodology:

1. **SDG 13 / control variable selection:** Three dependent variables connected to achievement of SDG 3 (neonatal mortality), SDG 5 (female years of schooling) and SDG 13 (consumption-based CO₂ emissions) were chosen. For each of these, the most important explanatory independent variables beyond digital access were identified as control variables, based on literature research.

2. **Data collection:** Data on the non-digital control variables were collected from reputable sources, such as the CIA, Global Carbon Project, ILO, UNESCO, UNDP, WHO and World Bank. The latest available data points for the 157 countries that are included in SDSN’s SDG Index were used.

3. **Data cleansing:** Variables with more than 40% of missing values were discarded. This applied to literacy rate in models for SDG 3 and SDG 5. Remaining missing country values were imputed based on the 3 countries most similar to the missing country in all other variables in the model.

Data points with extraordinarily high influence on the model—the outliers—were searched for based on their Cook distance, but no such data points were identified.
Moreover, highly correlated variable pairs, as defined by criteria: Akaike Information Criterion (AIC) ≤ 60, interpretation of the independent variables was selected based on three
For all three models, the chosen model was a multivariate approach that did not force the inclusion of DAI in the selected model confirmed the relevance of DAI indicators for making predictions on the three independent SDG variables. Additionally, mandatory statistical requirements for the models were met, i.e., independent, normally distributed residuals with equal variance (homoscedasticity) and a mean of zero. Some indicators were transformed (log, quadratic terms) to meet these requirements.

5. Model calculation: In a first step, the model regressed the DAI and the control variables on the SDG variable to identify the impact that DAI can have on SDG achievement, considering the most important other aspects that influence each SDG variable. In a second step, the DAI indicators were regressed on the DAI.

6. Insight generation: The following insights were gained from the models:
- An impact prediction of a 5% increase in DAI on each SDG variable expresses the relative change in the SDG variable that is expected from a 5% change in the DAI. Predictions are made for a hypothetical country, calculated as the average of all countries, considering the impacts of the control variables. The prediction is provided together with a 95% confidence interval. This interval signifies that the real value for the SDG variable is expected to be within this range with a probability of 95% for the hypothetical average country.
- A ranking compares the importance of each explanatory variable in predicting the SDG variable across a broad range of possible models, providing additional evidence of the relevance of DAI in impacting SDG achievement.

7. Insight communication: To make the impact predictions easier to grasp and relate to, they were translated into tangible impacts on peoples’ lives and the environment. The following calculation logic was applied to better communicate the impact of a 5% increase in DAI:

<table>
<thead>
<tr>
<th>SDG indicator</th>
<th>Indicator impact</th>
<th>Tangible impact</th>
<th>Calculation logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDG 3: Neonatal mortality (per 1,000 live births)</td>
<td>-3.4% neonatal mortality (per 1,000 live births)</td>
<td>-2 babies saved for every 1,000 live births in Least Developed Countries</td>
<td>The 3.4% decrease in neonatal mortality (per 1,000 live births) is applied to the global average (of the 157 countries studied) of neonatal mortality (per 1,000 live births). Then the difference between neonatal mortality (per 1,000 live births) with and without the 7.4% decrease is calculated, resulting in the increased number of babies per 1,000 live births that survive their first 28 days.</td>
</tr>
<tr>
<td>SDG 4: Female years of schooling (% male)</td>
<td>+0.5% female years of schooling (% male)</td>
<td>+2 weeks of schooling for each female learner</td>
<td>The 0.5% increase in female years of schooling (% male) is applied to the global average (of the 157 countries studied) of female years of schooling (% male). The difference between female years of schooling (% male) with and without the 0.5% increase is then multiplied by the global average (of the 157 countries studied) for male years of schooling (per 100 female years). Since data is recorded in years, the figure is multiplied by the number of days in a year, providing the result of 14.5 days. Taking into account a 2-day weekend, this is equivalent to two school weeks. School holidays are not considered in this calculation.</td>
</tr>
<tr>
<td>SDG 13: Consumption-based CO₂ emissions (MtCO₂)</td>
<td>-0.6% consumption-based CO₂ emissions (MtCO₂)</td>
<td>-450 coal plants shut down (average plant with 300 MW)</td>
<td>The 0.6% decrease in consumption-based CO₂ emissions (MtCO₂) is applied to the global total (of the 157 countries studied) of consumption-based CO₂ emissions (MtCO₂). The difference in consumption-based CO₂ emissions (MtCO₂) with and without the 1.8% reduction is then divided by the average annual CO₂ emissions of an average coal plant. The average annual CO₂ emissions of an average coal plant is calculated across 6,721 coal plant units (30 MW and larger, average of 920 MW). In 104 countries, as per CoalSwarm’s Global Coal Plant Tracker (data as of January 2018). This provides the result of a reduction impact equivalent to the annual emissions of 450 coal plants.</td>
</tr>
</tbody>
</table>

Acknowledgements

The Global e-Sustainability Initiative (GeSI) commissioned Accenture Strategy to develop the content for this report, including the Digital Access Index.

The Global e-Sustainability Initiative and Accenture Strategy thank the many experts engaged throughout this effort for generously providing their time, insights and feedback to strengthen the quality of this report.

Report lead: Luis Nieves, Managing Director, GeSI

Report team: ATAM: Tim Fleming; Del: Lina Azurbo, John Pflueger; Deutsche Telekom: Silke Thomas; ETON: Dr. Heinz-Gerd Peters; Fujitsu: Andrew Lewis, Mel Melk, Shona Partridge; Huawei: Robert Hanson; ITU: Mario Castro-Grande, Malcolm Johnson; Samsung: Kevin Considine; Taiwán Mobile: Tiffany Yang; Swisscom: Stefanie Haag, David Ross; Pascual Salinas; Telenor: Jan Kristensen; Verizon: Christopher Lloyd

GeSI: Chiara Venturini, Daniel List

Accenture Strategy: Katharina Beck, Mauricio Bermudez-Neubauer, Philipp Buddemeier, Justin Keeble, Christina v. Moeller

Accenture Applied Intelligence: Samih Adhikari, Julio Lahoiz-Benitez

Supported by: luca design: Susanne Salmen, Oliver Staudenmayer, (design and layout); Rat für Ruhm und Ehre Valdis Witt (editing)

Contacts: luca.neven@gesi.org, justin.keeble@accenture.com, philipp.buddemeier@accenture.com, katharina.beck@accenture.com

The following materials were prepared exclusively for the Global e-Sustainability Initiative by Accenture Strategy. Neither the Global e-Sustainability Initiative nor Accenture Strategy makes any representations or warranties to any third party with respect to the information contained in this report. While reasonable steps have been taken to ensure that the information in this report is correct, neither the Global e-Sustainability Initiative nor Accenture Strategy give any warranty or make any representation as to its accuracy and accept any liability for any errors or omissions. The study should not be used or relied upon by anyone without independent investigation and analysis and neither the Global e-Sustainability Initiative nor Accenture Strategy assumes any liability for any such use or reliance by third parties. This document makes reference to trademarks owned by third parties. All such third-party trademarks are the property of their respective owners. No sponsorship, endorsement or approval of this content by the owners of such trademarks is intended, expressed or implied.

© GeSI 2018. All rights reserved.

About GeSI: The Global e-Sustainability Initiative (GeSI) is a strategic partnership of the Information and Communication Technology (ICT) sector committed to creating and promoting digital technologies and practices that foster economic, environmental and social sustainability. Formed in 2001, GeSI’s vision is a sustainable world through responsible, ICT-enabled transformation. GeSI fosters global and open cooperation, informs the public of its members’ voluntary actions to improve their sustainability performance, and promotes technologies that foster sustainable development. GeSI enjoys a diverse and global membership, representing around 90 of the world’s leading ICT companies and partners with over 30 global business and international organizations such as the International Telecommunications Union (ITU), the United Nations Framework Convention on Climate Change (UNFCCC), the United Nations Environment Programme (UNEP), the World Business Council for Sustainable Development (WBCSD), the World Resources Forum Association (WRF), the Institute of Electrical and Electronics Engineers (IEEE), the Responsible Business Alliance (RBA), the Centre for Sustainable Consumption and Production (CSCP), the Institute for Sustainable Development and International Relations (IDDR), the Global Climate Forum (GCF), the World Green Building Council (WGBC), the Flemish Institute for Technological Research (VITO), and the International Energy Agency (IEA) – as well as a range of international stakeholders connected to ICT sustainability objectives to share and develop ideas, launch joint initiatives, and collaborate on a broad range of sustainability projects. These partnerships help shape GeSI’s global vision regarding the evolution of the ICT sector, and how it can best meet the challenges of sustainable development. For more information, see www.gesi.org.

About Accenture: Accenture is a leading global professional services company, providing a broad range of services and solutions in strategy, consulting, digital, technology and operations. Combining unmatched experience and specialized skills across more than 40 industries and all business functions underpinned by the world’s largest delivery network, Accenture works at the intersection of business and technology to help clients improve their performance and create sustainable value for their stakeholders. With approximately 442,000 people serving clients in more than 120 countries, Accenture drives innovation to improve the way the world works and lives. Visit us at www.accenture.com.

About Accenture Strategy: Accenture Strategy operates at the intersection of business and technology. We bring together our capabilities in business, technology, operations and function strategy to help our clients envision and execute industry-specific strategies that support enterprise-wide transformation. Our focus on issues related to digital disruption, competitiveness, global operating models, talent and leadership help drive both efficiencies and growth. For more information, follow @AccentureStrat or visit www.accenture.com/strategy.
This report speaks about a close-to-causal relationship if the relations...

Please refer to the methodological appendix for the calculation logic displayed. However, further research, including survey triangulation, would not be comparable to that of the other indicator-level correlations.

As our research is situated in the social sciences, one might argue that a consumption-based CO₂ emissions indicator attributes emissions to...

An overview of the methodology applied is provided in the methodological appendix.

Please refer to the methodological appendix for the calculation logic applied.

We assume a very strong link between digital solutions and their impact on cities...
“As this important GeSI report underscores, digital solutions are essential tools for achieving the Sustainable Development Goals. Broadband connectivity combined with new cutting-edge applications are being adopted for every one of the SDGs, from fighting poverty (SDG 1), to raising the quality of education (SDG 4) and health (SDG 3) and to enabling the scale-up of renewable energy (SDG 7). The telecommunications providers, technology firms, academic centers of excellence, and others in the digital sectors should now step forward boldly to provide breakthrough digital solutions at global scale.”

“Swisscom will play its part in achieving the UN Sustainability Goals, and will rely on this study to inform our efforts. GeSI’s research clearly shows how innovative digital solutions can promote sustainable development.”

“Technology from AI to 5G has the power to transform public safety, education, transportation, manufacturing, energy and more. We have an obligation to make sure innovation best serves the people and communities we serve. This report demonstrates the impact our industry is making and we couldn’t be more optimistic about AT&T’s contribution in what’s to come.”

“At Unilever, we apply an SDG lens to every aspect of strategy, from innovating to create sustainable solutions to marketing products and services that inspire consumers to make sustainable choices. This report demonstrates the critical role of digital solutions, and I am thrilled about the prospects of using these solutions and working with the digital industry to help us deliver on our commitment towards the SDGs.”

“We at Samsung, devote our talent and technology to creating innovative products and services. Our products and services are designed to help people connect, pursue their best and enrich their life more easily and seamlessly. As a global corporate citizen, we are pursuing opportunities to solve societal challenges with a vision for a sustainable future, in line with the UN SDGs.”